Finding generically stable measures
نویسنده
چکیده
This work builds on [6] and [7] where Keisler measures over NIP theories are studied. We discuss two constructions for obtaining generically stable measures in this context. First, we show how to symmetrize an arbitrary invariant measure to obtain a generically stable one from it. Next, we show that suitable sigma-additive probability measures give rise to generically stable Keisler measures. Also included is a proof that generically stable measures over o-minimal theories and the p-adics are smooth.
منابع مشابه
Generically stable and smooth measures in NIP theories
We formulate the measure analogue of generically stable types in first order theories with NIP (without the independence property), giving several characterizations, answering some questions from [9], and giving another treatment of uniqueness results from [9]. We introduce a notion of “generic compact domination”, relating it to stationarity of Keisler measures, and also giving group versions....
متن کاملAmalgamated duplication of some special rings along an ideal
Let be a commutative Noetherian ring and let I be a proper ideal of . D’Anna and Fontana in [6] introduced a new construction of ring, named amalgamated duplication of along I. In this paper by considering the ring homomorphism , it is shown that if , then , also it is proved that if , then there exists such that . Using this result it is shown that if is generically Cohen-Macaulay (resp. gen...
متن کاملA Note on Generically Stable Measures and fsg Groups
We prove (Proposition 2.1) that if μ is a generically stable measure in an NIP theory, and μ(φ(x, b)) = 0 for all b then for some n, μ(∃y(φ(x1, y)∧ ..∧φ(xn, y))) = 0. As a consequence we show (Proposition 3.2) that if G is a definable group with fsg in an NIP theory, and X is a definable subset of G then X is generic if and only if every translate of X does not fork over ∅, precisely as in stab...
متن کاملWeight and Measure in NIP Theories
We initiate an account of Shelah’s notion of “strong dependence” in terms of generically stable measures, proving a measure analogue (for NIP theories) of the fact that a stable theory T is “strongly dependent” if and only if all (finitary) types have finite weight.
متن کاملOn ω-categorical, generically stable groups and rings
We prove that every ω-categorical, generically stable group is nilpotent-byfinite and that every ω-categorical, generically stable ring is nilpotent-by-finite.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Symb. Log.
دوره 77 شماره
صفحات -
تاریخ انتشار 2012